How the Google Neural Machine Translation (GNMT) Accuracy translate the Indonesian Idioms to English Language

Penelitian

Authors

  • Dolli Rotua Sinaga Universitas Prima Indonesia
  • Berlin Sibarani Universitas Negeri Medan
  • Alfina Gustiany Siregar Universitas Medan Area
  • Sri Wahyuni Hasibuan STAIN Mandailing Natal pak

DOI:

https://doi.org/10.31004/jerkin.v3i4.453

Keywords:

Terjemahan Mesin Saraf Google (Google Neural Machine Translation (GNMT)), Terjemahan Ekspresi Idiomatik, Akurasi Semantik dan Kontekstual, Penerjemahan Mesin Bahasa Indonesia-Inggris

Abstract

Penelitian ini menguji efektivitas Google Neural Machine Translation (GNMT) dalam menerjemahkan ekspresi idiomatik bahasa Indonesia ke dalam bahasa Inggris. Idiom, yang memiliki makna kiasan yang berakar kuat pada konteks budaya, menghadirkan tantangan yang signifikan bagi sistem penerjemahan mesin karena tidak lagi menggunakan penerjemahan kata per kata secara harfiah. Dengan menggunakan pendekatan deskriptif kualitatif, penelitian ini menilai idiom-idiom bahasa Indonesia yang dipilih berdasarkan tiga parameter utama: keakuratan semantik, koherensi sintaksis, dan ketepatan kontekstual. Temuan penelitian menunjukkan bahwa meskipun GNMT cukup baik dalam mempertahankan struktur sintaksis dan terkadang menangkap esensi semantik dari idiom, GNMT sering kali kesulitan untuk mempertahankan nuansa budaya dan kontekstual yang tertanam dalam ungkapan-ungkapan tersebut. Hal ini menyoroti keterbatasan penting dari sistem penerjemahan mesin saraf dalam menangani bahasa non-literal. Penelitian ini menekankan perlunya model penerjemahan yang peka terhadap konteks dan budaya. Selain itu, penelitian ini berkontribusi pada wacana yang sedang berlangsung dalam linguistik terapan dan penerjemahan mesin, memberikan wawasan yang berharga untuk kemajuan teknologi dan metodologi pembelajaran bahasa.

References

Adawiyah, A. R., Baharuddin, B., Wardana, L. A., & ... (2023). Comparing post-editing translations by Google NMT and Yandex NMT. In …. academia.edu. https://www.academia.edu/download/103100829/1084.pdf

Dewayanti, D., & Margana, M. (2024). The impact of contextual understanding on neural machine translation accuracy: A case study of Indonesian cultural idioms in English translation. … of Language, Education, and …. https://jurnal.ar-raniry.ac.id/index.php/englisia/article/view/24433

Farhana, B. C. D., Baharuddin, B., Wardana, L. A., & ... (2023). Academic Text Quality Improvement By English Department Students of University of Mataram: A Study on Pre-Editing of Google Neural Machine Translation. Jurnal Ilmiah Profesi …. https://jipp.unram.ac.id/index.php/jipp/article/view/1186

Hapsari, R. D., Wardana, L. A., & ... (2023). The Ability of English Education Department Students of University of Mataram to Conduct Post-Editing of Narrative Text for GNMT. Journal of Classroom …. https://jppipa.unram.ac.id/index.php/jcar/article/view/4713

INDAH, S. (2023). AN ANALYSIS OF ACCURACY LEVEL OF GOOGLE TRANSLATE IN ENGLISH-INDONESIAN TRANSLATION. repository.radenintan.ac.id. https://repository.radenintan.ac.id/28675/

Ma’shumah, N. K., Sianipar, I. F., & Salsabila, C. Y. (2021). Google Translate Performance in Translating English Passive Voice into Indonesian. … : Journal of Language and …. https://unars.ac.id/ojs/index.php/pioneer/article/view/1292

Pratama, M. O., Kareen, P., Choo, P., & ... (2022). English-to-Sundanese Translation using Neural Machine Translation: Collection and Analytics. … , Cyber and …. https://ieeexplore.ieee.org/abstract/document/10017635/

Putri, B. M. E., Baharuddin, B., & ... (2023). The The Analysis of Post-Editing of Literary Text of Gnmt by Students of English Department University of Mataram. … Jurnal Linguistik, Sastra …. https://www.ejournalunwmataram.org/index.php/trendi/article/view/1295

Sibuea, T. F. B., Budi, W., & Jonathan, K. (2023). The Equivalence Problems Produced by Machine Translation on A Literary Text: A Study on The Indonesian Translation of Harry Potter: The Order of Phoenix. … of Cultural, Literary, and …. https://ejournal2.undip.ac.id/index.php/culturalistics/article/view/17417

Sutrisno, A. (2025). Inter-sentential translation and language perspective in Neural Machine Translation: insights from ChatGPT as a transformer-based model. Asia Pacific Translation and Intercultural Studies. https://doi.org/10.1080/23306343.2025.2485609

Taufik, A. (2020). Pre-editing of Google neural machine translation. Journal of English Language and Culture. https://journal.ubm.ac.id/index.php/english-language-culture/article/view/2137

Wong, Y. K., & Huspi, S. H. (2023). A Conceptual Framework for Malay-English Code-Switched Neural Machine Translation. International Conference of Reliable Information and …. https://doi.org/10.1007/978-3-031-59707-7_5

Zhou, F. (2024). The Comparison of Translationese in Machine Translation and Human Transation in terms of Translation Relations. ArXiv Preprint ArXiv:2404.08661. https://arxiv.org/abs/2404.08661

Zulaika, B. A., Baharuddin, B., & Wardana, L. A. (2022). Students’ Ability To Conduct Pre-Editing of Text Procedure for Google Neural Machine Translation. In Journal of Language. researchgate.net. https://www.researchgate.net/profile/Baharuddin-Baharuddin/publication/365839899_STUDENTS’_ABILITY_TO_CONDUCT_PRE-EDITING_OF_TEXT_PROCEDURE_FOR_GOOGLE_NEURAL_MACHINE_TRANSLATION/links/64c0c7ac8de7ed28bac30d7a/STUDENTS-ABILITY-TO-CONDUCT-PRE-EDITING-OF-TEX

Downloads

Published

30-04-2025

How to Cite

Dolli Rotua Sinaga, Berlin Sibarani, Alfina Gustiany Siregar, & Sri Wahyuni Hasibuan. (2025). How the Google Neural Machine Translation (GNMT) Accuracy translate the Indonesian Idioms to English Language: Penelitian. Jurnal Pengabdian Masyarakat Dan Riset Pendidikan, 3(4), 787–792. https://doi.org/10.31004/jerkin.v3i4.453